101 research outputs found

    Theory of Interacting Parallel Quantum Wires

    Full text link
    We present self-consistent numerical calculations of the electronic structure of parallel Coulomb-confined quantum wires, based on the Hohenberg-Kohn-Sham density functional theory of inhomogeneous electron systems. We find that the corresponding transverse energy levels of two parallel wires lock together when the wires' widths are similar and their separation is not too small. This energy level locking is an effect of Coulomb interactions and of the the density of states singularities that are characteristic of quasi- one-dimensional Fermionic systems. In dissimilar parallel wires level lockings are much less likely to occur. Energy level locking in similar wires persists to quite large wire separations, but is gradually suppressed by inter-wire tunneling when the separation becomes small. Experimental implications of these theoretical results are discussed.Comment: RevTeX, 23 papes, 8 compressed tar figures in a separate file, to be published in the Canadian Journal of Physics

    Real-time rendering of realistic surface diffraction using low-rank factorisation

    No full text
    We propose a novel approach for real-time rendering of diffraction effects in surface reflectance in arbitrary environments. Such renderings are usually extremely expensive as they require the computation of a convolution at real-time framerates. In the case of diffraction, the diffraction lobes usually have high frequency details that can only be captured with high resolution convolution kernels which make calculations even more expensive. Our method uses a low rank factorisation of the diffraction lookup table to approximate a 2D convolution kernel by two simpler low rank kernels which allow the computation of the convolution at real-time framerates using two rendering passes. We show realistic renderings in arbitrary environments and achieve a performance from 50 to 100 FPS making possible to use such a technique in real-time applications such as video games and VR

    Selective Determination of Pyridine Alkaloids in Tobacco by PFTBA Ions/Analyte Molecule Reaction Ionization Ion Trap Mass Spectrometry

    Get PDF
    The application of perfluorotributylamine (PFTBA) ions/analyte molecule reaction ionization for the selective determination of tobacco pyridine alkaloids by ion trap mass spectrometry (IT-MS) is reported. The main three PFTBA ions (CF3+, C3F5+, and C5F10N+) are generated in the external source and then introduced into ion trap for reaction with analytes. Because the existence of the tertiary nitrogen atom in the pyridine makes it possible for PFTBA ions to react smoothly with pyridine and forms adduct ions, pyridine alkaloids in tobacco were selectively ionized and formed quasi-molecular ion [M + H]+and adduct ions, including [M + 69]+, [M + 131]+, and [M + 264]+, in IT-MS. These ions had distinct abundances and were regarded as the diagnostic ions of each tobacco pyridine alkaloid for quantitative analysis in selected-ion monitoring mode. Results show that the limit of detection is 0.2 μg/mL, and the relative standard deviations for the seven alkaloids are in the range of 0.71% to 6.8%, and good recovery of 95.6% and 97.2%. The proposed method provides substantially greater selectivity and sensitivity compared with the conventional approach and offers an alternative approach for analysis of tobacco alkaloids

    Intravenous Polyethylene Glycol Inhibits the Loss of Cerebral Cells after Brain Injury

    Get PDF
    We have tested the effectiveness of polyethylene glycol (PEG) to restore the integrity of neuronal membranes after mechanical damage secondary to severe traumatic brain injury (TBI) produced by a standardized head injury model in rats. We provide additional detail on the standardization of this model, particularly the use and storage of foam bedding that serves to both support the animal during the impact procedure and to dampen the acceleration of the brass weight. Further, we employed a dye exclusion technique using ethidium bromide (EB; quantitative evaluation) and horseradish peroxidase (HRP; qualitative evaluation). Both have been successfully used previously to evaluate neural injury in the spinal cord since they enter cells when their plasma membranes are damaged. We quantified EB labeling (90 M in 110 L of sterile saline) after injection into the left lateral ventricle of the rat brain 2 h after injury. At six h after injection and 8 h after injury, the animals were sacrificed and the brains were analyzed. In the injured rat brain, EB entered cells lining and medial to the ventricles, particularly the axons of the corpus callosum. There was minimal EB labeling in uninjured control brains, limited to cells lining the luminal surfaces of the ventricles. Intravenous injections of PEG (1 cc of saline, 30% by volume, 2000 MW) immediately after severe TBI resulted in significantly decreased EB uptake compared with injured control animals. A similar result was achieved using the larger marker, HRP. PEG-treated brains closely resembled those of uninjured animals

    Time-Regular pattern analysis on effect of extreme temperature to the death of cerebrovascular and cardiovascular diseases in Chongqing

    Get PDF
    Objective: To explore the relationship between extreme temperature and death from cardiovascular and cerebrovascular diseases in Chongqing, a “furnace city”, and its time regularity. Methods the death data of cardiovascular and cerebrovascular diseases, meteorological and environmental protection data from 2011 to 2013 in Chongqing were collected. The confounding factors such as air pollution, long-term and short-term trends were controlled. The distributed lag nonlinear model (dlnm) was used to analyze the lag effect and cumulative effect of extreme temperature on the death of cardiovascular and cerebrovascular diseases. Results for cerebrovascular disease death, the effect of high temperature was the greatest on the same day (rr= 166, 95% CI: 119–233) for 2 days; the influence of low temperature lags 4 days and lasts for 12 days. The maximum RR value appears on the 6th day (lag 6) and is 122 (95% CI: 106–141). For ischemic heart disease deaths, the effect of high temperature was greatest on the same day (rr= 188, 95% CI: 112–315) for 7 days; the influence of low temperature lags behind for 1 D and lasts for 27 D. The maximum RR value appears on the second day (lag 2) and is 205 (95% CI: 132–320). The cumulative risk of extreme high temperature (34 ℃) on death from cerebrovascular disease and ischemic heart disease was 208 (95% CI: 149–290) and 263 (95% CI: 127~542), and the cumulative effects of extreme low temperature (2 ℃) on them were 461 (95% CI: 185–115) and 120 (95% CI: 372–463). Conclusion the lag effect of extreme high temperature and low temperature on the death of the two diseases is different; the cumulative effect of extreme low temperature is higher than that of extreme high temperature, especially on the death of ischemic heart disease

    A Multi-scale Approach to Investigating the Wintering Habitat Selection of Red-crowned Cranes in the Yancheng Nature Reserve, China

    Get PDF
    A B S T R A C T The red-crowned crane (Grus japonensis) is a rare and endangered species that lives in wetland habitats. In this study, we first compared crane habitat selection in December, 2013 and January, 2014 using the Neu method in the Yancheng National Reserve (YNR). We then explored the relative importance of habitats (plot, landscape) and spatial factors on red-crowned crane abundance at multiple scales using regression models and variation partitioning approaches. Our results indicated that seepweed (Suaeda salsa) tidal flats and reed ponds were the favored habitats by cranes in December and January, respectively. The variation partitioning results indicated that plot and landscape factors were the determining factors of crane abundance in December, but plot features were more important in January. Furthermore, the pure and total effects of plot factors, and the combined effects of plot, landscape and spatial factors, increased significantly from December to January. At plot scale, vegetation coverage and road distance were the crucial variables that determine crane abundance in both months. At landscape scale, percentage of reed ponds and percentage of seepweed tidal flats showed a positive independent effect on crane abundance in both months. Percentage of paddy fields was also a significant variable in December, whereas percentage of fishponds was in January. Our study indicated that crane habitat selection and the determining factors changed over time due to food availability and human disturbance (e.g., reed pond and fishpond harvests). Our results encourage the application of partitioning methods in avian ecology because they provide a more in-depth understanding of the importance of different explanatory variables over traditional regression methods. Efforts should be made to strengthen wetland restoration and improve the mitigation of human disturbance in the YNR

    Suppression of Tumor Energy Supply by Liposomal Nanoparticle-Mediated Inhibition of Aerobic Glycolysis

    Get PDF
    Aerobic glycolysis enables cancer cells to rapidly take up nutrients (e.g., nucleotides, amino acids, and lipids) and incorporate them into the biomass needed to produce a new cell. In contrast to existing chemotherapy/radiotherapy strategies, inhibiting aerobic glycolysis to limit the adenosine 5′-triphosphate (ATP) yield is a highly efficient approach for suppressing tumor cell proliferation. However, most, if not all, current inhibitors of aerobic glycolysis cause significant adverse effects because of their nonspecific delivery and distribution to nondiseased organs, low bioavailability, and a narrow therapeutic window. New strategies to enhance the biosafety and efficacy of these inhibitors are needed for moving them into clinical applications. To address this need, we developed a liposomal nanocarrier functionalized with a well-validated tumor-targeting peptide to specifically deliver the aerobic glycolysis inhibitor 3-bromopyruvate (3-BP) into the tumor tissue. The nanoparticles effectively targeted tumors after systemic administration into tumor-bearing mice and suppressed tumor growth by locally releasing 3-BP to inhibit the ATP production of the tumor cells. No overt side effects were observed in the major organs. This report demonstrates the potential utility of the nanoparticle-enabled delivery of an aerobic glycolysis inhibitor as an anticancer therapeutic agent

    Boosting oxygen evolution reaction by activation of lattice‐oxygen sites in layered Ruddlesden‐Popper oxide

    Get PDF
    Emerging anionic redox chemistry presents new opportunities for enhancing oxygen evolution reaction (OER) activity considering that lattice-oxygen oxidation mechanism (LOM) could bypass thermodynamic limitation of conventional metal-ion participation mechanism. Thus, finding an effective method to activate lattice-oxygen in metal oxides is highly attractive for designing efficient OER electrocatalysts. Here, we discover that the lattice-oxygen sites in Ruddlesden-Popper (RP) crystal structure can be activated, leading to a new class of extremely active OER catalyst. As a proof-of-concept, the RP Sr3(Co0.8Fe0.1Nb0.1)2O7-δ (RP-SCFN) oxide exhibits outstanding OER activity (eg, 334 mV at 10 mA cm−2 in 0.1 M KOH), which is significantly higher than that of the simple SrCo0.8Fe0.1Nb0.1O3-δ perovskite and benchmark RuO2. Combined density functional theory and X-ray absorption spectroscopy studies demonstrate that RP-SCFN follows the LOM under OER condition, and the activated lattice oxygen sites triggered by high covalency of metal-oxygen bonds are the origin of the high catalytic activity.This work was financially supported by the Australian Research Council (Discovery Early Career Researcher Award No. DE190100005)

    The impacts of increased heat stress events on wheat yield under climate change in China

    Get PDF
    China is the largest wheat producing country in the world. Wheat is one of the two major staple cereals consumed in the country and about 60% of Chinese population eats the grain daily. To safeguard the production of this important crop, about 85% of wheat areas in the country are under irrigation or high rainfall conditions. However, wheat production in the future will be challenged by the increasing occurrence and magnitude of adverse and extreme weather events. In this paper, we present an analysis that combines outputs from a wide range of General Circulation Models (GCMs) with observational data to produce more detailed projections of local climate suitable for assessing the impact of increasing heat stress events on wheat yield. We run the assessment at 36 representative sites in China using the crop growth model CSM-CropSim Wheat of DSSAT 4.5. The simulations based on historical data show that this model is suitable for quantifying yield damages caused by heat stress. In comparison with the observations of baseline 1996-2005, our simulations for the future indicate that by 2100, the projected increases in heat stress would lead to an ensemble-mean yield reduction of –7.1% (with a probability of 80%) and –17.5% (with a probability of 96%) for winter wheat and spring wheat, respectively, under the irrigated condition. Although such losses can be fully compensated by CO2 fertilization effect as parameterized in DSSAT 4.5, a great caution is needed in interpreting this fertilization effect because existing crop dynamic models are unable to incorporate the effect of CO2 acclimation (the growth enhancing effect decreases over time) and other offsetting forces
    corecore